ASHRAE 90.1 Web Software

Jan 12, 2018ASHRAE

For years, we have worked with ASHRAE to develop mobile applications related to a number of their standards and Handbook of Fundamentals chapters including ASHRAE 62.1 Standard, a duct fitting database app (which is quite popular, surprisingly), and an interactive psychrometric chart app. These apps have all helped bolster ASHRAE’s entry into the mobile age. Below are descriptions and screenshots of the various apps we have developed for ASHRAE:

Duct Fitting Database
The HVAC ASHRAE Duct Fitting Database (DFDB) app for the iPhone and iPad allows users to perform pressure loss calculations for all 243 ASHRAE fittings listed in the ASHRAE Handbook of Fundamentals.

image

image

image

This app is based upon the popular ASHRAE Duct Fitting Database desktop application, and you can do pretty much everything in this app that you can do in the desktop program that is offered by ASHRAE. The advantage of this mobile app is that you can easily use it out in the field to perform quick duct pressure loss calculations. The following is a list of features of this app:

  • You can create individual projects, each with unique input values and results.
  • Each fitting has its own custom set of input parameters and results
  • It includes a useful search feature that allows you to type in a partial or full fitting code name to quickly retrieve it.
  • It allows you to display and email two types of reports. These are similar to the reports available in the desktop version of the DFDB software. The app reports also include a spreadsheet attachment that you can open on your desktop computer to do further analysis.
  • All fittings include pictures that you can view within the app.
  • The app displays inputs and results in both english and metric units.

ASHRAE 62.1 App
The HVAC ASHRAE 62.1-2013 app for the iPhone allows you to perform comprehensive minimum ventilation calculations for a wide variety of commercial buildings based upon Standards 62.1-2007 and 2010/2013 (which are essentially the same). This app is based upon the “62MZCalc.xls” Excel spreadsheet that accompanies each copy of the ASHRAE 62.1 User’s Manual. You can do pretty much everything in this app that you can do in the Excel spreadsheet, in addition to creating multi-system projects and emailing results so you can perform further analysis.

image

image

image

ASHRAE Psychrometric Chart
The HVAC Psychrometric Chart (HVAC Psych Chart) app is the first truly interactive graphical psychrometric chart for the iPad, and it includes both IP and SI units. Using your finger, you can easily plot HVAC and other psychrometric processes on the iPad screen while out in the field, save the graphs, and then email the graph and results to clients.

It includes a number of features that allow the user to:

  • Customize the graph in many different ways including specifying the psychrometric chart line colors, chart background color, hide/display status of chart lines, point colors, process line colors, units of graph values, and the min/max limits of the chart
  • Create non-standard charts with high maximum dry-bulb temperatures or ones for high altitudes and low barometric pressures
  • Using a finger, plot as many points as wanted on the screen. As the user moves their finger around the graph, the psychrometric properties at the top of the screen dynamically update. In addition, users can double-tap a point to display the point properties and then edit them

image

image

image

ASHRAE Standard 90.1
ASHRAE 90.1 (Energy Standard for Buildings Except Low-Rise Residential Buildings) is a United States standard that provides minimum requirements for energy efficient designs for buildings except for low-rise residential buildings. Percent improvement over ASHRAE 90.1 is the basis for awarding energy points within the LEED rating system. In addition, many states apply ASHRAE 90.1 to buildings being constructed or under renovation.

There are 2 methods of complying with ASHRAE 90.1: the prescriptive and performance paths. The prescriptive path requires that all components of the building meet the minimum standards specified by ASHRAE 90.1. The performance path involves modeling the proposed building design and demonstrating (through building energy simulation) that it uses less energy than a baseline building built to ASHRAE 90.1 specifications. In the performance path approach, a baseline Energy Cost Budget (ECB) is established, based on the building size and program.

Section 11 of Standard 90.1 describes the ECB Method, an alternative approach to demonstrating compliance of a building design with Standard 90.1. Compliance with Section 11 is described in detail in Section 11.1.4 of the standard. With the ECB Method, a computer program is used to calculate the design energy cost for the proposed building design and to calculate the energy cost budget for a budget building design. In the budget building design, which is a variant of the proposed building design, all mandatory and prescriptive requirements of the Standard are applied. In other words, the energy cost budget represents the building as if it complied with the Standard. The design energy cost for the proposed design cannot exceed the energy cost budget.

This standard has always confounded us in terms of determining the best type of app or software tool to develop for it, and that’s ASHRAE Standard 90.1. ASHRAE 90.1 is such a comprehensive and wide ranging standard for building energy efficiency that is hard to develop just one software tool that will “automate” everything needed by stakeholders. We’ve talked with ASHRAE Publications for years and even created a joint SurveyMonkey to gauge interest in the type of software tool that would best serve the 90.1 community. Here are a couple of screenshots of the questions and responses from the SurveyMonkey:

image
image

image

Based upon the responses from the survey above and talking with members of the ASHRAE 90.1 standards committee, we decided to develop a software tool to aid in filling out the 90.1 Energy Cost Budget method (ECB) compliance form located on page 395 of the ASHRAE 90.1-2010 User’s Manual. At first, we were contemplating developing a mobile app for iOS, but then received feedback that most users would not use it in the field. Therefore, we decided to develop a web app that would work on any device (laptop, iOS, or Android) as long as it was connected to the Internet. This would allow users to easily use it in the office and in the field.

The web app that we developed is based upon a variation of the ECB forms that start on page 395 of the User’s Manual. The altered forms were developed into the form of an Excel spreadsheet by Greg McCall of Vancouver, Canada. The variations in the spreadsheet have helped better tailor the forms toward building code officials. For example, it breaks down the energy end use and fuel type sections into building, parkade, and site/other sections that allow for more intelligible categorization by space type within the building. In addition, the spreadsheet includes a number of statistical values that help code officials visualize the relationships between the different values.

The following two images are the ECB forms from the User’s Manual:

image

image

The 90.1 ECB website allows users to export all of the information and calculated results to an Excel spreadsheet in the exact same format as Greg McCall’s original spreadsheet. From this exported spreadsheet, you can alter values, export reports to PDF, and print reports. Below is a sample of the statistics page in the web app:

image

While not everyone is utilizing the standard by implementing the ECB method, this web application is a good start to digitizing the ASHRAE 90.1 standard. The link to the ASHRAE 90.1 website is here: http://901ecb.ashrae.org.

Any feedback is much appreciated: support@ashrae.org.

ASHRAE Building Energy Quotient (Building EQ) Website

ASHRAE Building Energy Quotient (Building EQ) Website

ASHRAE’s Building EQ Portal provides a quick energy analysis that benchmarks a building’s energy performance. Building EQ assists in the preparation of an ASHRAE Level 1 Energy Audit to identify means to improve a building’s energy performance including low-cost, no-cost energy efficiency measures and an Indoor Environmental Quality (IEQ) survey with recorded measurements to provide additional information to assess a building’s performance.